

Syntax Reference

Program Structure
An Eve program

The following is a block of Eve code.

``` 
  search // search a database 
    ... 
  bind   // modify a database 
    ... 
``` 

Eve programs are documents with blocks of
code interspersed. The prose of the document
is CommonMark compatible, with blocks of Eve
code contained in code fences. In every block
of Eve code you search for data in a database,
and change data based on what you found.

Record

// addresses of people who are 30 years old
people = [tag: "person" age: 30 address]

The predominant data structure in Eve is a
record. In every block, you search for records
by supplying a pattern of attributes and values.
All records matching that pattern are returned.

person.age = 30 You can access attributes with dot notation.
[#person brother: [name: "Ryan"]] Records can be nested to find more complex

patterns.

// These are equivalent
[#person]
[tag: "person"]

A common attribute for records is “tag”, which
can be accessed using the # operator as a
shortcut. Tags are generally used to refer to
collections of related records.

Actions

search
 people = [#person age: 30 address]

Eve has three actions: search, bind, and
commit. Search tells Eve to find records in a
database. Bind and commit only execute when
all records are found.

commit
 [#Chris age: 30]

Commit tells Eve to persist the subsequent
records, even if their supporting data are
removed.

search
 [#time hours]

bind @browser
 [#div text: "It is {{hours}} o’clock"]

Bind tells Eve to update subsequent records as
their supporting data change. This is how Eve
reacts to changes in data.

Not

// people who are not employees
person = [#person]
not(person = [#employee])

You can check for the absence of conditions
using not. In this case, we're specifying that the
person is not also tagged employee.

Equivalence

//Pairs of people with the same age, because age is used
in both records
person = [#person age]
person2 = [#person age]

Eve doesn't have assignment, only
equivalence. Records can be joined by using
an attribute in two different records.

//Something that's never true
x = 10
x = 100

This will always fail. x is not first 10 and then
100. Instead this says that 10 = 100, which will
never be true.

// People older than 30
[#person age > 30]
// The same as above
[#person age]
age > 30
// Also the same as above
people = [#person]
people.age > 30

Three ways to filter attributes.

 Filter an attribute directly in a record.

 Filter an attribute outside of a record.

 Use dot notation to access an attribute on a
record.

If-Then

guest = if p = [#person] then p
 if [#person spouse] then spouse

(points, grade) = if score > 90 then (4, "A")
 else if score > 80 then (3, "B")
 else (2, "C")

if allows you to do conditional equivalence.
Here we're stating that guest is equivalent to
all the people and the spouses of those people.

The second example uses else to make the
options exclusive (only the first matching
clause will be taken) and does multiple returns.

Functions and Aggregates

// The sin function being used with degree input
x = sin[degrees: data]

// The sin function being used with radian input
x = sin[radians: data * π / 180]

Functions take a set and return a set. They
operate element-wise on their input, akin to
the map() function in other languages.
Arguments are explicitly defined when the
function is called, so they can be written in any
order.

total-employees = count[given: employees]
department-budgets = sum[given: salary, per: department]

Aggregates are functions that collapse a set to
a single value. Examples include sum, count, or
max. Aggregates are akin to the reduce() or
fold() function in other languages.

Update Operators

search
 chris = [#Chris]

commit
 chris.age := 30
 chris.favorite-food += "pizza"
 chris.favorite-color -= "blue"
 chris <- [eye-color: "green", hair-color: "brown"]
 chris := none

Eve has four operators that update records:
add, set, remove, and merge.
 Add (+=) - adds value to attribute
 Set (:=) - sets the value of attribute
 Remove (-=) - removes value from attribute
 Merge (<-) - merges one record into

another

Using the set operator with the none keyword
removes the record from the database
entirely.

Databases

// Actions can be performed on any number of databases
search @db
bind @db1, @db2

Databases contain facts. You can perform
actions on one or more databases. If no
database is specified, the action is performed
on a default local database.

search @db1
 [#data data-sources]

bind data-sources
 [#new-record]

Databases are first-class citizens that can be
used like any other value. You can apply
actions to databases specified by values.

